Part Number Hot Search : 
E2020 TOP9100 PE34502 00GA1 TK39J60W DS024 608X5 B38110
Product Description
Full Text Search
 

To Download MRF19045LSR3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Freescale Semiconductor, Inc.
Order this document by MRF19045/D
The RF MOSFET Line
RF Power Field Effect Transistors
Designed for PCN and PCS base station applications with frequencies from 1.9 to 2.0 GHz. Suitable for TDMA, CDMA and multicarrier amplifier applications. * Typical CDMA Performance @ 1960 MHz, 26 Volts, IDQ = 550 mA Multi - carrier CDMA Pilot, Sync, Paging, Traffic Codes 8 Through 13 Output Power -- 9.5 Watts Avg. Power Gain -- 14.9 dB Efficiency -- 23.5% Adjacent Channel Power -- 885 kHz: - 50 dBc @ 30 kHz BW IM3 -- - 37 dBc * 100% Tested Under 2 - Carrier N - CDMA * Internally Matched, Controlled Q, for Ease of Use * High Gain, High Efficiency and High Linearity * Integrated ESD Protection * Designed for Maximum Gain and Insertion Phase Flatness * Capable of Handling 5:1 VSWR, @ 26 Vdc, 1.93 GHz, 45 Watts CW Output Power * Excellent Thermal Stability * Characterized with Series Equivalent Large - Signal Impedance Parameters * Low Gold Plating Thickness on Leads, 40 Nominal. * In Tape and Reel. R3 Suffix = 250 Units per 32 mm, 13 Inch Reel.
N - Channel Enhancement - Mode Lateral MOSFETs
MRF19045LR3 MRF19045LSR3
1990 MHz, 45 W, 26 V LATERAL N - CHANNEL RF POWER MOSFETs
Freescale Semiconductor, Inc...
CASE 465E - 04, STYLE 1 NI - 400 MRF19045LR3
CASE 465F - 04, STYLE 1 NI - 400S MRF19045LSR3
MAXIMUM RATINGS
Rating Drain - Source Voltage Gate - Source Voltage Total Device Dissipation @ TC = 25C Derate above 25C Storage Temperature Range Operating Junction Temperature Symbol VDSS VGS PD Tstg TJ Value 65 - 0.5, +15 105 0.60 - 65 to +150 200 Unit Vdc Vdc Watts W/C C C
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction to Case Symbol RJC Value (1) 1.65 Unit C/W
ESD PROTECTION CHARACTERISTICS
Test Conditions Human Body Model Machine Model Class 2 (Minimum) M3 (Minimum)
(1) Refer to AN1955/D, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.motorola.com/semiconductors/rf . Select Documentation/Application Notes - AN1955. NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
Rev. 6
MOTOROLA RF Motorola, Inc. 2004 DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF19045LR3 MRF19045LSR3 1
Freescale Semiconductor, Inc.
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
Characteristic OFF CHARACTERISTICS Drain - Source Breakdown Voltage (VGS = 0 Vdc, ID = 100 Adc) Zero Gate Voltage Drain Current (VDS = 26 Vdc, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) ON CHARACTERISTICS (DC) Gate Threshold Voltage (VDS = 10 Vdc, ID = 100 Adc) Gate Quiescent Voltage (VDS = 26 Vdc, ID = 550 mAdc) VGS(th) VGS(Q) VDS(on) gfs 2 3 -- -- -- 3.8 0.19 4.2 4 5 0.21 -- Vdc Vdc Vdc S V(BR)DSS IDSS IGSS 65 -- -- -- -- -- -- 10 1 Vdc Adc Adc Symbol Min Typ Max Unit
Freescale Semiconductor, Inc...
Drain - Source On - Voltage (VGS = 10 Vdc, ID = 1 Adc) Forward Transconductance (VDS = 10 Vdc, ID = 2 Adc) DYNAMIC CHARACTERISTICS Reverse Transfer Capacitance (1) (VDS = 26 Vdc, VGS = 0, f = 1.0 MHz)
Crss
--
1.8
--
pF
FUNCTIONAL TESTS (In Motorola Test Fixture, 50 ohm system) 2 - carrier N - CDMA, 1.2288 MHz Channel Bandwidth, IM3 measured in 1.2288 MHz Integrated Bandwidth. ACPR measured in 30 kHz Integrated Bandwidth. Common - Source Amplifier Power Gain (VDD = 26 Vdc, Pout = 9.5 W Avg, 2 - Carrier N - CDMA, IDQ = 550 mA, f1 = 1930 MHz, f2 = 1932.5 MHz and f1 =1987.5 MHz, f2 = 1990 MHz) Drain Efficiency (VDD = 26 Vdc, Pout = 9.5 W Avg, 2 - Carrier N - CDMA, IDQ = 550 mA, f1 = 1930 MHz, f2 = 1932.5 MHz and f1 =1987.5 MHz, f2 = 1990 MHz) 3rd Order Intermodulation Distortion (VDD = 26 Vdc, Pout = 9.5 W Avg, 2 - Carrier N - CDMA, IDQ = 550 mA, f1 = 1930 MHz, f2 = 1932.5 MHz and f1 =1987.5 MHz, f2 = 1990 MHz; IM3 Measured in a 1.2288 MHz Integrated Bandwidth Centered at f1 - 2.5 Mhz and f2 +2.5 MHz, Referenced to the Carrier Channel Power) Adjacent Channel Power Ratio (VDD = 26 Vdc, Pout = 9.5 W Avg, 2-carrier N-CDMA, IDQ = 550 mA, f1 = 1930 MHz, f2 = 1932.5 MHz and f1 = 1987.5 MHz, f2 = 1990 MHz; ACPR measured in a 30 kHz Integrated Bandwith Centered at f1 - 885 kHz and f2 +885 kHz) Input Return Loss (VDD = 26 Vdc, Pout = 9.5 W Avg, 2 - Carrier N - CDMA, IDQ = 550 mA, f1 = 1930 MHz, f2 = 1932.5 MHz and f1 =1987.5 MHz, f2 = 1990 MHz) Pout, 1 dB Compression Point (VDD = 26 Vdc, IDQ = 550 mA, f = 1990 MHz) Output Mismatch Stress (VDD = 26 Vdc, Pout = 45 W CW, IDQ = 550 mA, f = 1930 MHz, VSWR = 5:1, All Phase Angles at Frequency of Tests) (1) Part is internally matched both on input and output. Gps 13 14.5 -- dB
21
23.5
--
%
IM3
--
- 37
- 35
dBc
ACPR
--
- 51
- 45
dBc
IRL
--
- 16
-9
dB
P1dB
--
45
--
W
No Degradation In Output Power Before and After Test
MRF19045LR3 MRF19045LSR3 2
For More Information On This Product, Go to: www.freescale.com
MOTOROLA RF DEVICE DATA
Freescale Semiconductor, Inc.
R2 VGG + C1 + C2 C3 R1 C4 C6 C7 C8 B1 R3 W1 Z4 Z8 R4 W2 + C9 + R5 B2 B2 C10 C11 VDD + C12
Z3 Z6 RF INPUT
Z7 Z9 Z10 C13 Z11
RF OUTPUT
Z1 C5
Z2
Z5
Freescale Semiconductor, Inc...
Z1 Z2 Z3 Z4 Z5 Z6 Z7
1.336 0.693 1.033 0.468 0.271 0.263 1.165
x 0.081 x 0.081 x 0.047 x 0.047 x 0.460 x 0.930 x 0.047
Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip
Z8 Z9 Z10 Z11 PCB
0.216 x 0.047 Microstrip 0.519 x 0.254 Microstrip 0.874 x 0.081 Microstrip 0.645 x 0.081 Microstrip Arlon GX0300-55-22, 30 mils, r = 2.55
NOTE: Z3, Z4, Z7, Z8 lengths and component placement tolerances are 0.050. Zx lengths are microstrip lengths between components, center-line to center-line. All component and z-length tolerances are 0.015, except as noted.
Figure 1. 1930 - 1990 MHz 2-Carrier N-CDMA Test Circuit Schematic
Table 1. 1930 - 1990 MHz 2-Carrier N-CDMA Test Circuit Component Designations and Values
Designators B1, B2 C1, C2 C3, C11 C4, C8 C5 C6, C7 C9, C10, C12 C13 R1 R2, R3, R4, R5 W1, W2 WS1, WS2 Description 0.120 x 0.333 x 0.100, Surface Mount Ferrite Beads, Fair Rite #2743019446 10 mF, 35 V Tantalum Surface Mount Chip Capacitors, Kemet #T495X106K035AS4394 0.1 mF Chip Capacitors, Kemet #CDR33BX104AKWS 24 pF Chip Capacitors, B Case, ATC #100B240JP500X 470 pF Chip Capacitor, B Case, ATC #100B471JP200X 11 pF Chip Capacitors, B Case, ATC #100B110JP500X 22 mF, 35 V Tantalum Surface Mount Chip Capacitors, Kemet #T491X226K035AS4394 8.2 pF Chip Capacitor, B Case, ATC #100B8R2CP500X 560 k, 1/4 W Chip Resistor (0.08 x 0.13) 8.2 , 1/4 W Chip Resistors (0.08 x 0.13), Garrett Instruments #RM73B2B110JT Solid Copper Buss Wire, 16 AWG Beryllium Copper Wear Blocks (0.005 x 0.150 x 0.350) Nominal
MOTOROLA RF DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF19045LR3 MRF19045LSR3 3
Freescale Semiconductor, Inc.
C1 R1 B1 R2 C3 C5 C13 C4 W1 R3 C6 C7 C8 W2 R4 B2 R5 C9 C10 C12
C11
C2
WS1
WS2
Freescale Semiconductor, Inc...
MRF19045/S Rev - 0
Figure 2. 1930 - 1990 MHz 2-Carrier N-CDMA Test Circuit Component Layout
MRF19045LR3 MRF19045LSR3 4
For More Information On This Product, Go to: www.freescale.com
MOTOROLA RF DEVICE DATA
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
, DRAIN EFFICIENCY (%),G ps , POWER GAIN (dB) , DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB) 40 35 30 25 20 15 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 Pout, OUTPUT POWER (WATTS) (Avg. 2-Carrier N-CDMA) VDD = 26 Vdc IDQ = 450 mA f1 = 1960 MHz, f2 = 1960.1 MHz -30 -35 IM3 ACPR Gps -55 -60 -65 -70 IM3 (dBc), ACPR (dBc) -40 -45 -50 35 30 25 -30 IM3 -40 Gps -50 ACPR 5 1900 1930 1960 1990 2020 f, FREQUENCY (MHz) -60 20 15 10 0 IM3 (dBc), ACPR (dBc), IRL (dB) -10 -20
VDD = 26 Vdc, IDQ = 550 mA 2.5 MHz Carrier Spacing 1.2288 MHz Source Channel Bandwidth 9 CH FWD Carrier (9.8 dB Peak/Avg. Ratio @ 0.01%) IRL
Freescale Semiconductor, Inc...
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
Figure 3. 2-Carrier N - CDMA ACPR, IM3, Power Gain and Drain Efficiency versus Output Power
-30 IM3, THIRD ORDER INTERMODULATION DISTORTION (dBc) VDD = 26 Vdc IDQ = 550 mA f1 = 1960 MHz, f2 = 1962.5 MHz 350 mA 450 mA -45 550 mA 700 mA -50 1.2288 MHz Source Channel Bandwidth, 9 CH FWD Carrier (9.8 dB Peak/Avg. Ratio @ 0.01%) 0 1 2 3 4 5 6 7 8 9 10 11 12
Figure 4. 2-Carrier N-CDMA ACPR, IM3, Power Gain, IRL and Drain Efficiency versus Output Power
-45 -50 VDD = 26 Vdc IDQ = 550 mA f1 = 1960 MHz, f2 = 1962.5 MHz 350 mA 450 mA -60 700 mA -65 550 mA 0 1 2 3 4 1.2288 MHz Source Channel Bandwidth, 9 CH FWD Carrier (9.8 dB Peak/Avg. Ratio @ 0.01% Probability) (CCDF) 5 6 7 8 9 10 11 12
-35
-40
-55
-55 Pout, OUTPUT POWER (WATTS) (Avg. 2-Carrier N-CDMA)
-70
Pout, OUTPUT POWER (WATTS) (Avg. 2-Carrier N-CDMA)
Figure 5. 2-Carrier N-CDMA IM3 versus Output Power
, DRAIN EFFICIENCY (%), Pout , OUTPUT POWER (WATTS CW) 70 60 50 40 30 20 10 0 0.0 0.5
Figure 6. 2-Carrier N-CDMA ACPR versus Output Power
17 P 1dB P out P 3dB G ps , POWER GAIN (dB) 15 14 13 Gps VDD = 26 Vdc IDQ = 550 mA f = 1960 MHz 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 12 11 10 Pin, INPUT POWER (WATTS CW) 16
15.5 700 mA 15.0 G ps , POWER GAIN (dB) 550 mA 450 mA 14.5 350 mA VDD = 26 Vdc, IDQ = 550 mA f1 = 1960 MHz, f2 = 1962.5 MHz 14.0 1.2288 MHz Source Channel Bandwidth, 9 CH FWD Carrier (9.8 dB Peak/Avg. Ratio @ 0.01% Probability) (CCDF) 0 1 2 3 4 5 6 7 8 9 10 11 12
13.5
Pout, OUTPUT POWER (WATTS) (Avg. 2-Carrier N-CDMA)
Figure 7. 2-Carrier N-CDMA Power Gain versus Output Power
Figure 8. CW Output Power, Power Gain and Drain Efficiency versus Input Power
MOTOROLA RF DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF19045LR3 MRF19045LSR3 5
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
, DRAIN EFFICIENCY (%),G ps , POWER GAIN (dB) 40 35 30 25 20 15 10 IMD 5 0 0.1 1.0 10 100 -60 -65 Gps VDD = 26 Vdc IDQ = 450 mA f1 = 1960 MHz, f2 = 1960.1 MHz -25 -30 -35 -40 -45 -50 -55 IMD, INTERMODULATION DISTORTION (dBc) 40 35 30 25 20 15 10 5 1900 G ps IMD IRL VDD = 26 Vdc IDQ = 450 mA 100 kHz Tone Spacing 0 -5 -10 -15 -20 -25 -30 -35 2020 IMD, INTERMODULATION DISTORTION (dBc), IRL (dB) , DRAIN EFFICIENCY (%),G ps , POWER GAIN (dB)
1930
1960 f, FREQUENCY (MHz)
1990
Freescale Semiconductor, Inc... IMD, INTERMODULATION DISTORTION (dBc)
Pout, OUTPUT POWER (WATTS PEP)
Figure 9. CW Two-Tone Power Gain, IMD and Drain Efficiency versus Output Power
-25 -30 -35 -40 -45 -50 -55 -60 -65 -70 0.1 1.0 10 100 450 mA 550 mA VDD = 26 Vdc f1 = 1960 MHz, f2 = 1960.1 MHz 350 mA
Figure 10. CW Two-Tone Power Gain, Input Return Loss, IMD and Drain Efficiency versus Frequency
16.0 15.5 G ps , POWER GAIN (dB) 700 mA 15.0 550 mA 14.5 450 mA 14.0 13.5 350 mA 13.0 0.1 1.0 VDD = 26 Vdc f1 = 1960 MHz, f2 = 1960.1 MHz 10 100
700 mA
Pout, OUTPUT POWER (WATTS PEP)
Pout, OUTPUT POWER (WATTS PEP)
Figure 11. CW Two-Tone Intermodulation Distortion versus Output Power
IMD, INTERMODULATION DISTORTION (dBc) -20 -30 -40 -50 -60 -70 -80 -90 0.1 5th Order 7th Order VDD = 26 Vdc IDQ = 450 mA f1 = 1960 MHz, f2 = 1960.1 MHz
Figure 12. CW Two-Tone Power Gain versus Output Power
-20 -30 -40 -50 -IM3 @ 1.2288 MHz Integrated BW +IM3 @ 1.2288 MHz Integrated BW 1.2288 MHz Channel BW
(dBc)
3rd Order
-60 -70 -80 -90 -100
-ACPR @ 30 kHz Integrated BW
+ACPR @ 30 kHz Integrated BW
1.0
10
100
-110 -120 f, FREQUENCY (MHz)
Pout, OUTPUT POWER (WATTS PEP)
Figure 13. CW Two-Tone Intermodulation Distortion Products versus Output Power MRF19045LR3 MRF19045LSR3 6
Figure 14. 2-Carrier N-CDMA Spectrum
For More Information On This Product, Go to: www.freescale.com
MOTOROLA RF DEVICE DATA
Freescale Semiconductor, Inc.
Zo = 25 f = 1990 MHz
Zload
f = 1930 MHz
Zsource f = 1930 MHz f = 1990 MHz
Freescale Semiconductor, Inc...
VDD = 26 V, IDQ = 550 mA, Pout = 9 W Avg., 2-Carrier N-CDMA f MHz 1930 1960 1990 Zsource 15.52 - j16.5 14.24 - j14.44 11.11 - j13.01 Zload 4.52 - j1.86 3.85 - j1.04 3.44 - j0.69
Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground.
Input Matching Network
Device Under Test
Output Matching Network
Z
source
Z
load
Figure 15. Series Equivalent Source and Load Impedance
MOTOROLA RF DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF19045LR3 MRF19045LSR3 7
Freescale Semiconductor, Inc.
NOTES
Freescale Semiconductor, Inc...
MRF19045LR3 MRF19045LSR3 8
For More Information On This Product, Go to: www.freescale.com
MOTOROLA RF DEVICE DATA
Freescale Semiconductor, Inc.
NOTES
Freescale Semiconductor, Inc...
MOTOROLA RF DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF19045LR3 MRF19045LSR3 9
Freescale Semiconductor, Inc.
NOTES
Freescale Semiconductor, Inc...
MRF19045LR3 MRF19045LSR3 10
For More Information On This Product, Go to: www.freescale.com
MOTOROLA RF DEVICE DATA
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
2X G SEE NOTE 4 1 2X K 2 2X D bbb N (LID) ccc
M M
Q
M
bbb B 3
TB
M
A
M NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. 4. INFORMATION ONLY: CORNER BREAK (4X) TO BE .060.005 (1.520.13) RADIUS OR .06.005 (1.520.13) x 45 CHAMFER. INCHES MIN MAX .795 .805 .380 .390 .125 .163 .275 .285 .035 .045 .004 .006 .600 BSC .057 .067 .092 .122 .395 .405 .395 .405 .120 .130 .395 .405 .395 .405 .005 BSC .010 BSC .015 BSC MILLIMETERS MIN MAX 20.19 20.44 9.65 9.9 3.17 4.14 6.98 7.24 0.89 1.14 0.10 0.15 15.24 BSC 1.45 1.7 2.33 3.1 10 10.3 10 10.3 3.05 3.3 10 10.3 10 10.3 0.127 BSC 0.254 BSC 0.381 BSC
B
TA
M
B
M
TA
M
B E
M
ccc C
M
TA
M
B
M
Freescale Semiconductor, Inc...
R (LID) F
aaa
M
TA
M
B
M
M (INSULATOR) A
T
SEATING PLANE
S (INSULATOR) aaa
M
H B
M
DIM A B C D E F G H K M N Q R S aaa bbb ccc
TA
M
A
CASE 465E - 04 ISSUE E NI - 400 MRF19045LR3
STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE
2X D bbb M T A
1
M
B
M
NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994. 3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. DIM A B C D E F H K M N R S aaa bbb ccc INCHES MIN MAX .395 .405 .395 .405 .125 .163 .275 .285 .035 .045 .004 .006 .057 .067 .092 .122 .395 .405 .395 .405 .395 .405 .395 .405 .005 REF .010 REF .015 REF MILLIMETERS MIN MAX 10.03 10.29 10.03 10.29 3.18 4.14 6.98 7.24 0.89 1.14 0.10 0.15 1.45 1.70 2.34 3.10 10.03 10.29 10.03 10.29 10.03 10.29 10.03 10.29 0.127 REF 0.254 REF 0.38 REF
2
2X K R C
3 (LID)
ccc E
M
TA
M
B
M
N
ccc
M
TA
M
B
M
(LID)
F
A
(FLANGE)
A
T M
SEATING PLANE
H
S
(INSULATOR)
aaa
(FLANGE)
M
TA
M
B
M
(INSULATOR)
B
B
aaa
M
TA
M
B
M
STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE
CASE 465F - 04 ISSUE C NI - 400S MRF19045LSR3
MOTOROLA RF DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF19045LR3 MRF19045LSR3 11
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. E Motorola Inc. 2004 HOW TO REACH US: USA /EUROPE /LOCATIONS NOT LISTED: Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573, Japan 81-3-3440-3569 ASIA /PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334 HOME PAGE: http://motorola.com/semiconductors
MRF19045LR3 MRF19045LSR3 12
For More Information On This Product, Go to: www.freescale.com
MOTOROLA RF DEVICE DATA
MRF19045/D


▲Up To Search▲   

 
Price & Availability of MRF19045LSR3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X